ESTIMATING THE PRODUCTIVITY GAINS FROM IMPORTING

Joaquin Blaum, Claire Lelarge, Michael Peters

SCID IGC Conference, November 2014
INTRODUCTION

▶ Large fraction of world trade is accounted for by firms sourcing intermediate inputs from abroad

▶ Trade in inputs benefits domestic consumers:
 ▶ Better quality / new inputs reduce firms’ unit cost
 ▶ This lowers price of domestically produced goods

▶ Question: by how much?

▶ This paper: use theory and microdata to answer that question.
WHAT WE DO

- Study class of firm-based models of importing:
What We Do

- Study class of firm-based models of importing:
 - Heterogeneous firms
Study class of firm-based models of importing:
 - Heterogeneous firms
 - CES between domestic and foreign inputs
Study class of firm-based models of importing:

- Heterogeneous firms
- CES between domestic and foreign inputs
- Many heterogeneous sourcing countries

Sufficiency result:

Simple formula for aggregate gains from trade
Can be evaluated given the microdata on value added and firms' domestic expenditure shares

Quantitative exercise:

Can a model calibrated to sales data predict the right gains?

Welfare
Study class of firm-based models of importing:

- Heterogeneous firms
- CES between domestic and foreign inputs
- Many heterogeneous sourcing countries
- Love of variety + quality channel
WHAT WE DO

- Study class of firm-based models of importing:
 - Heterogeneous firms
 - CES between domestic and foreign inputs
 - Many heterogeneous sourcing countries
 - Love of variety + quality channel

- Sufficiency result:
 - Simple formula for aggregate gains from trade
 - Can be evaluated given the microdata on value added and firms’ domestic expenditure shares

- Quantitative exercise:
 - Can a model calibrated to sales data predict the right gains?
 - Welfare
RELATED LITERATURE

- Sufficient statistics to evaluate trade policy:
 - Arkolakis, Costinot, Rodriguez-Clare (2012)

- Recent literature on measuring productivity gains from importing:
 - Reduced-form analysis of trade reforms:
 - Structural approach:

- GE model of importing: Antràs, Fort, Tintelnout (2014)
OUTLINE FOR TODAY

1. Firm Problem: Domestic spending and unit costs

2. Embed in Macro Model: Real Wage & Welfare
 2.1 Sufficiency result
 2.2 Bias compared to aggregative model

3. Application to French data:
 3.1 Estimation of trade elasticity
 3.2 Aggregate gains in France
 3.3 Calibration exercise
A Model of Importing: Setup

Production structure

\[
\begin{align*}
y &= \phi k^{\alpha l^{1-\alpha-\gamma}x^\gamma} \\
x &= \left(\frac{\varepsilon^{-1}}{x_D^{\varepsilon}} + \frac{\varepsilon^{-1}}{x_I^{\varepsilon}}\right)\frac{\varepsilon}{\varepsilon-1} \\
x_D &= \eta(q_D, \varphi)z_D \\
x_I &= \left(\int_{c \in \Sigma} (\eta(q_c, \varphi)z_c)^{\frac{\rho-1}{\rho}} dc\right)^{\frac{\rho}{\rho-1}}
\end{align*}
\]

where

- \(q_c \) is country quality
- \(\eta(q, \varphi) \) denotes the firm-specific quality flow
- \(\Sigma \) is the firms’ sourcing strategy

Output market: no restrictions for now // Ext margin: fixed costs to importing
HETEROGENEITY

- Country-level: quality (q_c), price (p_c) and fixed costs (f_c)

- Firm-level: productivity (φ) and fixed cost (f_c)

- This structure nests existing work (Koren, Halpern, Szeidl (2011), Gopinath Neiman (2013))
IMPORTING AND UNIT COST

Unit cost given by:

\[UC = \frac{1}{\varphi} Q(\Sigma, \varphi)^\gamma r^\alpha W(1-\alpha-\gamma) \]

where

\[Q(\Sigma, \varphi) = \left(\left(\frac{p_D}{\eta_D} \right)^{1-\epsilon} + A(\Sigma, \varphi)^{1-\epsilon} \right)^{\frac{1}{1-\epsilon}} \]

and

\[A(\Sigma, \varphi) = \left(\int_{c \in \Sigma} \left(\frac{p_c}{\eta_c(\varphi)} \right)^{1-\rho} dc \right)^{\frac{1}{1-\rho}} \]
IMPORTING AND UNIT COST (Ctd)

- \(Q(\Sigma, \varphi) \) depends on prices, qualities, sourcing strategy...

\[\text{Exogenous} \times (s_D(\Sigma, \varphi))^{\gamma - 1} \]

\[\text{PEGains} \times \left(\frac{p_D}{\eta D} \right)^{\gamma r w (1 - \alpha - \gamma)} \]

\[\text{UC reduction relative to autarky (holding prices fixed) is observable} \]

\[\text{No assumptions about heterogeneity: quality, prices, productivity} \]

\[\text{Model for the extensive margin: fixed costs, search, ...} \]

\[\text{Output structure} \]

\[\text{Never used CES-structure of the import bundle} \]

\[\text{Homotheticity: } \eta(\varphi, q) \]

Details
IMPORTING AND UNIT COST (Ctd)

- \(Q(\Sigma, \varphi) \) depends on prices, qualities, sourcing strategy...

- But:

\[
Q(\Sigma, \varphi) = \frac{p_D}{\eta_D} s_D(\Sigma, \varphi)^{\frac{1}{\epsilon-1}}
\]
IMPORTING AND UNIT COST (Ctd)

- $Q(\Sigma, \varphi)$ depends on prices, qualities, sourcing strategy...

- But:

 $$Q(\Sigma, \varphi) = \frac{p_D}{\eta_D} s_D(\Sigma, \varphi)^{\frac{1}{\epsilon-1}}$$

- Hence:

 $$UC = \left(\frac{1}{\varphi} \right) \times \left(s_D(\Sigma, \varphi) \right)^{\frac{\gamma}{\epsilon-1}} \times \left(\frac{p_D}{\eta_D} \right)^{\gamma} \times r^\alpha w^{(1-\alpha-\gamma)}$$

 - Exogenous
 - PE Gains
 - GE

UC reduction relative to autarky (holding prices fixed) is observable

No assumptions about

Heterogeneity: quality, prices, productivity

Model for the extensive margin: fixed costs, search, ...

Output structure

Never used CES-structure of the import bundle

Homotheticity:

$$\eta(\varphi, q)$$
IMPORTING AND UNIT COST (Ctd)

▶ $Q(\Sigma, \varphi)$ depends on prices, qualities, sourcing strategy...

▶ But:

$$Q(\Sigma, \varphi) = \frac{p_D}{\eta_D}s_D(\Sigma, \varphi)\frac{1}{\varepsilon-1}$$

▶ Hence:

$$UC = \frac{1}{\varphi} \times (s_D(\Sigma, \varphi))^{\frac{\gamma}{\varepsilon-1}} \times \left(\frac{p_D}{\eta_D}\right)^{\gamma} \times r^{\alpha} w^{(1-\alpha-\gamma)}$$

Exogenous PE Gains GE

▶ UC reduction relative to autarky (holding prices fixed) is observable

Details
IMPORTING AND UNIT COST (Ctd)

- $Q(\Sigma, \varphi)$ depends on prices, qualities, sourcing strategy...

- But:

$$Q(\Sigma, \varphi) = \frac{p_D}{\eta_D} s_D(\Sigma, \varphi)^{\frac{1}{\varepsilon-1}}$$

- Hence:

$$UC = \frac{1}{\varphi} \times (s_D(\Sigma, \varphi))^{\frac{\gamma}{\varepsilon-1}} \times (\frac{p_D}{\eta_D})^\gamma r^\alpha w^{(1-\alpha-\gamma)}$$

 - Exogenous
 - PE Gains
 - GE

- UC reduction relative to autarky (holding prices fixed) is observable

- No assumptions about
 - Heterogeneity: quality, prices, productivity
 - Model for the extensive margin: fixed costs, search, ...
 - Output structure
 - Never used CES-structure of the import bundle
 - Homotheticity: $\eta(\varphi, q)$
Aggregation: from Micro to Macro

- Up to now: firm level partial equilibrium unit costs

- To make statements about the aggregate price (real wage)
 - Specify interaction on product markets (“pass through”)
 - Structure of interlinkages across producers (“roundabout production”)

- For welfare:
 - Need to take into account potential resource loss for extensive margin (e.g. fixed costs)
THE BASIC MACRO MODEL

- Measure of monopolistically competitive producers:

\[
y_i = \phi_i l_i^{1-\gamma} x_i^\gamma
\]

\[
x_i = \left(\frac{\varepsilon-1}{x_{Di}^\varepsilon} + \frac{\varepsilon-1}{x_{Ii}^\varepsilon}\right)^{\frac{\varepsilon}{\varepsilon-1}}
\]

- Perfectly competitive final good producer:

\[
Y = \left(\int \frac{\varepsilon-1}{\sigma} y_i^\frac{\varepsilon-1}{\sigma} di\right)^{\frac{\sigma}{\sigma-1}}
\]

- Perfectly competitive domestic input producer:

\[
X_D = Ml_D^\phi Y_X^{1-\phi}
\]
Fixed costs in units of labor

To close aggregate economy
 - impose balanced trade
 - exports in terms of the final good

Assume exogenously given labor supply of L
The domestic price P and the gains from trade (rel. to autarky) are given by

$$
\frac{1}{P} = \left(\int_{i=0}^{1} \left[\phi_i s_{Di}^{\frac{\gamma}{1-\varepsilon}} \right]^{\sigma-1} di \right)^{\frac{1}{\sigma-1}} \frac{1}{1-(1-\phi)\gamma}
$$

$$
G \equiv \frac{P^{Aut}}{P} = \left(\int_{i=0}^{1} \left(\frac{\phi_i^{\sigma-1}}{\int_{i=0}^{1} \phi_i^{\sigma-1} di} \right) s_{Di}^{\frac{\gamma(\sigma-1)}{1-\varepsilon}} di \right)^{\frac{1}{\sigma-1}} \frac{1}{1-(1-\phi)\gamma}
$$
The domestic price P and the gains from trade (rel. to autarky) are given by

\[
\frac{1}{P} = \left(\int_{i=0}^{1} \left[\phi_i s_D^{\frac{1}{1-\epsilon}} \right]^{\sigma-1} di \right)^{\frac{1}{\sigma-1}} \frac{1}{1-(1-\phi)\gamma}
\]

\[
G \equiv \frac{P^{Aut}}{P} = \left(\int_{i=0}^{1} \left(\frac{\phi_i^{\sigma-1}}{\int_{i=0}^{1} \phi_i^{\sigma-1} di} \right) s_D^{\frac{\gamma(\sigma-1)}{1-\epsilon}} di \right)^{\frac{1}{\sigma-1}} \frac{1}{1-(1-\phi)\gamma}
\]

- Require joint distribution of ϕ and s_D
A Sufficiency Result

- With micro-data on value added and domestic shares, we can identify innate productivity φ up to scale

$$\nu a = \kappa \times \left(\varphi S_D^{\frac{\gamma}{1 - \varepsilon}} \right)^{-\frac{1}{\sigma}}.$$

- Gains from trade

$$G = P_{Aut} - P = \left(\int v_i \int v_i ds \right)^\gamma \left(1 - \varepsilon \right) \left(1 - \sigma \right).$$

- Fully determined from micro-data given parameters $(\varepsilon, \gamma, \sigma)$

- Any model in the above class will have the same gains G

- In particular: extensive margin does not matter (given the data!)
With micro-data on value added and domestic shares, we can identify innate productivity \(\varphi \) up to scale

\[
va = \kappa \times \left(\varphi S_D^\frac{\gamma}{1-\varepsilon} \right)^{\sigma-1}.
\]

Gains from trade

\[
G = \frac{P^{Aut}}{P} = \left(\int \frac{va_i S_D^\gamma (1-\sigma)}{\int va_i di}^\frac{1-\varepsilon (1-\sigma)}{1-\sigma} di \right)^{\frac{1}{1-\sigma}}
\]
A Sufficiency Result

▶ With micro-data on value added and domestic shares, we can identify innate productivity φ up to scale

$$va = \kappa \times \left(\varphi s_D^{\frac{\gamma}{1-\varepsilon}} \right)^{\sigma-1}.$$

▶ Gains from trade

$$G = \frac{P^{Aut}}{P} = \left(\int \frac{va_i}{\int va_idi} s_D^{\gamma (1-\sigma)} di \right)^{\frac{1}{1-\sigma}}$$

▶ Fully determined from micro-data given parameters ($\varepsilon, \gamma, \sigma$)
A Sufficiency Result

- With micro-data on value added and domestic shares, we can identify innate productivity \(\varphi \) up to scale

\[
va = \kappa \times \left(\varphi s_D^{\frac{\gamma}{1-\varepsilon}} \right)^{\sigma-1}
\]

- Gains from trade

\[
G = \frac{P_{Aut}}{P} = \left(\int \frac{va_i s_D^{\frac{\gamma}{1-\varepsilon}(1-\sigma)}}{\int va_i di} di \right)^{\frac{1}{1-\sigma}}
\]

- Fully determined from micro-data given parameters \((\varepsilon, \gamma, \sigma)\)
- Any model in the above class will have the same gains \(G\)
A Sufficiency Result

- With micro-data on value added and domestic shares, we can identify innate productivity φ up to scale

$$va = \kappa \times \left(\varphi s_D^{\frac{\gamma}{1-\varepsilon}} \right)^{\sigma^{-1}}.$$

- Gains from trade

$$G = \frac{P^{Aut}}{P} = \left(\int \frac{va_i}{\int va_i di} s_{Di}^{\frac{\gamma}{1-\varepsilon}(1-\sigma)} di \right)^{\frac{1}{1-\sigma}}$$

- Fully determined from micro-data given parameters $(\varepsilon, \gamma, \sigma)$
- Any model in the above class will have the same gains G
- In particular: extensive margin does not matter (given the data!)
IMPORTANCE OF MICRO-DATA

- How important is the micro-heterogeneity?
IMPORTANTANCE OF MICRO-DATA

- How important is the micro-heterogeneity?
- Formula gives a simple answer:

\[
\ln \left(\frac{P_{Aut}}{P} \right) = \frac{\gamma}{1 - \varepsilon} \ln (\lambda^D) + \frac{1}{1 - \sigma} \ln \left(\int \frac{v_{ai}}{\lambda^D} \int v_{ai} \, di \right) \left(\frac{s_{Di}}{\lambda^D} \right)^{\frac{\gamma}{1 - \varepsilon} (1 - \sigma)} \left(1 - \sigma \right) \right).
\]

Agggregate Data Bias

- Can evaluate directly from micro-data
- Crucial dimensions:
 - cross-sectional dispersion of domestic shares
 - correlation between domestic shares and firm-size
- Note: Bias can be positive or negative
 - \(\text{Bias} > 0 \iff \sigma > 1 + \varepsilon - 1 \gamma \)
- Also: \(\varepsilon \) estimated from firm-level data is lower than aggregate trade elasticity.
IMPORTANCE OF MICRO-DATA

- How important is the micro-heterogeneity?
- Formula gives a simple answer:

\[
\ln \left(\frac{P^{Aut}}{P} \right) = \frac{\gamma}{1 - \varepsilon} \ln (\lambda^D) + \frac{1}{1 - \sigma} \ln \left(\int \frac{va_i}{\lambda^D} (\frac{s_{Di}}{\lambda^D})^{\gamma(1 - \sigma)} \, di \right)
\]

- Aggregate Data
- Bias

- Can evaluate directly from micro-data

- Bias > 0 ↔ \(\sigma < 1 + \varepsilon - 1 \)

- Also: \(\varepsilon \) estimated from firm-level data is lower than aggregate trade elasticity.
IMPORTANT OF MICRO-DATA

- How important is the micro-heterogeneity?
- Formula gives a simple answer:

$$\ln\left(\frac{P^{Aut}}{P}\right) = \frac{\gamma}{1 - \epsilon} \ln(\lambda^D) + \frac{1}{1 - \sigma} \ln\left(\int \frac{va_i}{s_{Di}} \left(\frac{\lambda^D}{\lambda^D}\right)^{\frac{1}{1 - \epsilon}(1 - \sigma)} di\right).$$

- Can evaluate directly from micro-data
- Crucial dimensions:
 - cross-sectional dispersion of domestic shares
 - correlation between domestic shares and firm-size

Note: Bias can be positive or negative

$$\text{Bias} > 0 \leftrightarrow \sigma > 1 + \epsilon - 1.$$
Importance of Micro-Data

How important is the micro-heterogeneity?

Formula gives a simple answer:

\[
\ln\left(\frac{P^{Aut}}{P}\right) = \frac{\gamma}{1-\varepsilon}\ln(\lambda^D) + \frac{1}{1-\sigma}\ln\left(\int \frac{va_i}{\lambda^D} (s_{Di})^{\frac{\gamma}{1-\varepsilon}(1-\sigma)} di\right).
\]

Can evaluate directly from micro-data

Crucial dimensions:

- Cross-sectional dispersion of domestic shares
- Correlation between domestic shares and firm-size

Note: Bias can be positive or negative

\[
\text{Bias} > 0 \iff \sigma > 1 + \frac{\varepsilon - 1}{\gamma}
\]
HOW IMPORTANT IS THE MICRO-HETEROGENEITY?

Formula gives a simple answer:

\[\ln \left(\frac{P^{Aut}}{P} \right) = \frac{\gamma}{1 - \varepsilon} \ln (\lambda^D) + \frac{1}{1 - \sigma} \ln \left(\int \int \frac{va_i}{\lambda^D} \left(\frac{sd_i}{\lambda^D} \right)^{\frac{\gamma}{1 - \varepsilon} \left(1 - \sigma\right)} \, di \right) \]

Aggregate Data + Bias

- Can evaluate directly from micro-data
- Crucial dimensions:
 - cross-sectional dispersion of domestic shares
 - correlation between domestic shares and firm-size
- Note: Bias can be positive or negative

\[\text{Bias} > 0 \iff \sigma > 1 + \frac{\varepsilon - 1}{\gamma} \]

- Also: \(\varepsilon \) estimated from firm-level data is lower than aggregate trade elasticity
WELFARE

- Welfare is given by

\[
U = \left(1 + \frac{1}{\sigma - 1} \left(1 - \gamma + \gamma \phi \lambda^D \right)^{-1}\right) \times \frac{w}{P} \times (L - L_F)
\]

where \(L_F\) is resource loss of firms’ extensive margin

- Need to actually solve for firms’ sourcing strategies
Extensive Margin with Fixed Costs of Sourcing

Optimal sourcing strategy solves

$$\pi(\varphi, [f]) = \max_{\Sigma, y, l} \left\{ py - \Gamma(\Sigma, y, \varphi, l) - wl - w \sum_{c \in \Sigma} f_c \right\}$$

where $\Gamma(\Sigma, y, \varphi, l)$ is cost function

Problem:

- Complementarities introduce interdependence across markets (\neq export problem, e.g. EKK).
- If f_c and q_c both vary by country, need to compare all sourcing strategies.
EXTENSIVE MARGIN: TRACTABILITY

- To make progress, impose more assumptions:

 1. Fixed costs are constant across countries
 \[\sum \] reduces to cut-off \(q \) (or share of countries \(n \))

 2. Other simplifying assumptions:
 - Homothetic demand: \(\eta(q, \phi) = q \)
 - Distribution of qualities is Pareto: \(G(q) = 1 - (q_{\min} / q) \theta \)
 - Prices are given by: \(p_c = \alpha q^\nu_c \)
 - Implication: Firm-specific price index
 \[A(\sum, \phi) - 1 = \zeta n \eta \]
 - \(\eta \) and \(\zeta \) depend on structural parameters (\(\rho, \theta, q_{\min}, \nu \))
 - can directly be estimated from micro-data

Details
EXTENSIVE MARGIN: TRACTABILITY

- To make progress, impose more assumptions:
 1. Fixed costs are constant across countries
 - Σ reduces to cut-off \bar{q} (or share of countries n)
EXTENSIVE MARGIN: TRACTABILITY

To make progress, impose more assumptions:

1. Fixed costs are constant across countries
 ▶ Σ reduces to cut-off \(\bar{q} \) (or share of countries \(n \))

2. Other simplifying assumptions:
 ▶ Homothetic demand:
 \[
 \eta (q, \varphi) = q
 \]
 ▶ Distribution of qualities is Pareto:
 \[
 G(q) = 1 - \left(\frac{q_{\text{min}}}{q} \right)^{\theta}
 \]
 ▶ Prices are given by:
 \[
 p_c = \alpha q_c^v
 \]
EXTENSIVE MARGIN: TRACTABILITY

- To make progress, impose more assumptions:

1. Fixed costs are constant across countries
 - Σ reduces to cut-off \bar{q} (or share of countries n)

2. Other simplifying assumptions:
 - Homothetic demand:
 $$\eta(q, \varphi) = q$$
 - Distribution of qualities is Pareto:
 $$G(q) = 1 - (q_{\text{min}}/q)^{\theta}$$
 - Prices are given by:
 $$p_c = \alpha q_c^\nu$$

- Implication: Firm-specific price index
 $$A(\Sigma, \varphi)^{-1} = zn^\eta$$

- η and z depend on structural parameters ($\rho, \theta, q_{\text{min}}, \nu$)
- can directly be estimated from micro-data
Empirical Application

- Application to French micro data
 - population of manufacturing firms
 - customs data matched to fiscal data at firm-level

- Procedure
 - Step 1: Estimate \((\epsilon, \gamma)\) from micro data
 - Step 2: Use micro-data and sufficiency result to quantify gains and bias
 - Step 3: Calibrate firm-based model
 - requires extensive margin
Estimating the “trade elasticity” ε

$$y = \phi s_D^{\frac{\gamma}{1-\varepsilon}} l^\alpha k^\beta X^\gamma$$

Estimate in two stages

1. Estimate productivity residual from

 $$\ln(S) = \tilde{\alpha} \ln(k) + \tilde{\beta} \ln(l) + \tilde{\gamma} \ln(x) + \ln(\vartheta)$$

2. Decompose $\ln(\vartheta)$ into trade and innate component

 $$\Delta \ln(\vartheta) = -\frac{\tilde{\gamma}}{\varepsilon - 1} \Delta \ln(s^D) + \Delta \ln(\varphi)$$

 instrumenting s^D with firm-specific supply shocks (Hummels, et. al. 2014)

 $$Z_{it} = \sum_{ck} \Delta W E S_{ckt} \times s_{cki}^{pre}$$
Estimating ε: Results

\[\Delta \ln(\hat{\theta}_{ist}) = \delta_s + \delta_t + \frac{1}{1 - \varepsilon} \times \Delta \tilde{\gamma}_s \ln(s_{ist}^D) + u_{ist} \]

<table>
<thead>
<tr>
<th></th>
<th>First Stage</th>
<th>Baseline</th>
<th>IV Estimate Importers in 2001</th>
<th>Balanced Panel</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta WES)</td>
<td>-0.010***</td>
<td>-0.741**</td>
<td>-0.546*</td>
<td>-0.646**</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.356)</td>
<td>(0.324)</td>
<td>(0.282)</td>
</tr>
<tr>
<td>(\gamma_s \Delta \ln(s_D))</td>
<td>-0.741**</td>
<td>-0.546*</td>
<td>-0.646**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.356)</td>
<td>(0.324)</td>
<td>(0.282)</td>
<td></td>
</tr>
<tr>
<td>Implied (\varepsilon)</td>
<td>2.35</td>
<td>2.83</td>
<td>2.55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.648)</td>
<td>(1.087)</td>
<td>(0.676)</td>
<td></td>
</tr>
<tr>
<td>(N)</td>
<td>67,696</td>
<td>67,696</td>
<td>58,027</td>
<td>48,480</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.00</td>
<td>0.265</td>
<td>0.266</td>
<td>0.267</td>
</tr>
</tbody>
</table>
THE GAINS FROM TRADE IN FIRM-BASED MODELS OF IMPORTING

- Measure aggregate gains as

\[G = \sum_k VA_k G_k \]

where

\[G_k = \left(\int \frac{va_{ik}}{va_{ik} di} s_{Dik} \frac{\gamma_k}{1-\epsilon} (1-\sigma) \right)^{\frac{1}{\sigma-1}} \]

Result

Micro Data = 13%

Aggregate Data = 11.9%

Bias = 13% - 11.9% = 9%

Wide class of firm-based models of importing will arrive exactly at this number if successfully calibrated to the micro-data.
The Gains from Trade in Firm-Based Models of Importing

- Measure aggregate gains as

\[G = \sum_k VA_k G_k \]

where

\[G_k = \left(\int \frac{va_{ik}}{va_{ik} s_{Dik}} \right)^{1/(1-\sigma)} \]

- Result

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Micro Data</td>
<td>13%</td>
</tr>
<tr>
<td>Aggregate Data</td>
<td>11.9%</td>
</tr>
</tbody>
</table>
The Gains from Trade in Firm-Based Models of Importing

- Measure aggregate gains as

\[G = \sum_k VA_k G_k \]

where

\[G_k = \left(\int \frac{va_{ik}}{\int va_{ik} di} s_{Dik} \right)^{\frac{1}{1-\sigma}} \]

- Result

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micro Data</td>
<td>13%</td>
</tr>
<tr>
<td>Aggregate Data</td>
<td>11.9%</td>
</tr>
</tbody>
</table>

- Bias

\[\text{Bias} = \frac{13\% - 11.9\%}{11.9\%} = 9\% \]
THE GAINS FROM TRADE IN FIRM-BASED MODELS OF IMPORTING

- Measure aggregate gains as

\[G = \sum_k VA_k G_k \]

where

\[G_k = \left(\int \int v_{aik} s_{Dik} \frac{\gamma_k (1-\sigma)}{1-\varepsilon (1-\sigma)} \, di \right)^{1/(1-\sigma)} \]

- Result

 - Micro Data = 13%
 - Aggregate Data = 11.9%

- Bias

 \[\text{Bias} = \frac{13\% - 11.9\%}{11.9\%} = 9\% \]

- Wide class of firm-based models of importing will arrive exactly at this number
THE GAINS FROM TRADE IN FIRM-BASED MODELS OF IMPORTING

- Measure aggregate gains as

\[G = \sum_k VA_k G_k \]

where

\[G_k = \left(\int \frac{va_{ik}}{\int va_{ik} di} s_{Dik} \frac{\gamma_k}{1-\epsilon} (1-\sigma) di \right)^{\frac{1}{1-\sigma}} \]

- Result

Micro Data = 13%
Aggregate Data = 11.9%

- Bias

\[\text{Bias} = \frac{13\% - 11.9\%}{11.9\%} = 9\% \]

- Wide class of firm-based models of importing will arrive exactly at this number

- ... if successfully calibrated to the micro-data

Micro Gains
The Size of the Bias

Figure: Bootstrap Distribution of the Bias

- Confident that bias is between 8% and 9.5%
Calibrating the Macro Model

Strategy:

1. Use estimated parameters \((γ, ε, η)\) from above Estimate \(η\)

2. Calibrate heterogeneity in productivity and fixed costs

\[
\begin{pmatrix}
\ln(ϕ) \\
\ln(f)
\end{pmatrix}
\sim
\mathcal{N}
\begin{pmatrix}
\mu_ϕ \\
\mu_f
\end{pmatrix}
\begin{pmatrix}
\sigma_ϕ^2 & \rho σ_ϕ σ_f \\
ρ σ_ϕ σ_f & σ_f^2
\end{pmatrix}
\]

3. Comparison:

3.1 Matching features of joint distribution of \(s_D\) and sales

3.2 Calibrate to sales data only
The Joint Distribution of Firm Size and Import Intensity

Figure: Micro gains and firm size
Calibration: Results

<table>
<thead>
<tr>
<th>Target Moments</th>
<th>French Data</th>
<th>Model</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate Domestic Share</td>
<td>0.71</td>
<td>0.71</td>
<td>$\mu_f = 9.05$</td>
</tr>
<tr>
<td>Share of Importers</td>
<td>0.32</td>
<td>0.32</td>
<td>$f^I = 0.003$</td>
</tr>
<tr>
<td>Dispersion in Domestic Shares (Importers)</td>
<td>0.27</td>
<td>0.26</td>
<td>$\sigma_f = 3.26$</td>
</tr>
<tr>
<td>Dispersion in log Sales (Importers)</td>
<td>1.63</td>
<td>1.62</td>
<td>$\sigma_\varphi = 1.01$</td>
</tr>
<tr>
<td>Correlation log Sales - Dom Shares (Importers)</td>
<td>-0.01</td>
<td>-0.01</td>
<td>$\rho = 0.41$</td>
</tr>
</tbody>
</table>
The Importance of Domestic Shares

<table>
<thead>
<tr>
<th></th>
<th>Baseline Model</th>
<th>Baseline Parameter</th>
<th>No s_D Data Model</th>
<th>No s_D Data Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate Domestic Share</td>
<td>0.71</td>
<td>$\mu_f = 9.05$</td>
<td>0.71</td>
<td>$\mu_f = 5.19$</td>
</tr>
<tr>
<td>Dispersion in log Sales</td>
<td>1.62</td>
<td>$\sigma_\phi = 1.01$</td>
<td>1.63</td>
<td>$\sigma_\phi = 1.72$</td>
</tr>
<tr>
<td>Share of Importers</td>
<td>0.32</td>
<td>$f^l = 0.003$</td>
<td>0.32</td>
<td>$f^l = 8.8e^{-05}$</td>
</tr>
<tr>
<td>Dispersion in Domestic Shares</td>
<td>0.26</td>
<td>$\sigma_f = 3.26$</td>
<td>0.09</td>
<td>$\sigma_f = 0$</td>
</tr>
<tr>
<td>Correlation log Sales - Dom Shares</td>
<td>-0.01</td>
<td>$\rho = 0.41$</td>
<td>-0.76</td>
<td>$\rho = 0$</td>
</tr>
<tr>
<td>Real Wage Gains</td>
<td>15.46%</td>
<td></td>
<td>12.94%</td>
<td></td>
</tr>
<tr>
<td>Welfare Gains</td>
<td>16.46%</td>
<td></td>
<td>13.73%</td>
<td></td>
</tr>
</tbody>
</table>

Ignoring micro data on domestic shares lowers predicted gains from trade by 16.3% (Real Wage) and 16.6% (Welfare).

For comparison: ACR-type gains: $0.71 \gamma/(1-\varepsilon) = 12.5\%$
Source of Bias

“Different models may lead to different magnitude of the gains from trade, because they predict different counterfactual autarky equilibria” (CRC, 2014)
Source of Bias

“Different models may lead to different magnitude of the gains from trade, because they predict different counterfactual autarky equilibria” (CRC, 2014)

▶ Here: predict productivity φ from sales and s_D

$$\text{var}(\ln(\text{Sales})) = \sigma^2_\varphi + \left(\frac{\gamma}{\varepsilon - 1}\right)^2 \sigma^2_{SD} - 2\frac{\gamma}{\varepsilon - 1} \text{cov}(\log(\varphi), \log(s_D))$$

▶ Two types of biases:

1. Too little dispersion in domestic shares \rightarrow Too much variance in φ \rightarrow Gains are downward biased
2. Too strong a negative correlation between φ and s_D \rightarrow Too little variance in φ \rightarrow Gains are upward biased
SOURCE OF BIAS

“Different models may lead to different magnitude of the gains from trade, because they predict different counterfactual autarky equilibria” (CRC, 2014)

► Here: predict productivity ϕ from sales and s_D

$$\text{var}(\ln(\text{Sales})) = \sigma^2_{\phi} + \left(\frac{\gamma}{\varepsilon - 1}\right)^2 \sigma^2_{SD} - 2\frac{\gamma}{\varepsilon - 1} \text{cov}(\log(\phi), \log(s_D))$$

Dispersion Bias

Correlation Bias

► Two types of biases:

1. Too little dispersion in domestic shares \rightarrow Too much variance in ϕ \rightarrow Gains are downward biased

2. Too strong a negative correlation between ϕ and s_D \rightarrow Too little variance in ϕ \rightarrow Gains are upward biased

► In our case: dispersion effect dominates

$$\sigma^\text{Full}_\phi = 1.01 < 1.72 = \sigma^\text{NSD}_\phi$$
Marginal Distributions

Fraction of firms (in 100 bins of equal length)

Domestic share, importers

In(Sales), importers

French data Baseline No domestic share data

Note: the distributions of ln(sales) have been normalized to have a mean of 1
CONCLUSIONS

- Wide class of models: domestic spending shares fully capture UC reductions through sourcing

- Micro-data on value added and domestic shares fully determine the macro gains from trade in non-aggregative environment
 - robust across models
 - aggregate statistic gives biased answer of 9%

- Source of bias:
 - domestic shares are required to identify physical productivity
 - physical productivity is required to predict counterfactual allocations in autarky

- Puts discipline on quantitative models of importing and useful for applied work
Appendix
RELATION TO EXISTING PAPERS

This framework encompasses most of the existing papers, e.g.

 - Homothetic demand: \(\eta (q, \varphi) = q \)
 - Single outside country: \(\rho \to \infty \) and \(G_k (q) \) degenerate
 - No quality/price differences between products: \(q_k / p_k = A \)
 - Equal fixed costs (plus firm-specific noise): \(f_{ck} = f \times u \) where \(u \) is firm-specific

2. Gopinath Neiman (2013)
 - Homothetic demand: \(\eta (q, \varphi) = q \)
 - No distinction between products and countries
 - All countries are alike: \(G_k (q) \) degenerate
 - Constant fixed costs across firms (\(f \times n^\lambda \))

 We show direct evidence on
 - Substantial dispersion in quality: \(G (q) \) not degenerate
 - Importance of complementarities: \(\rho < \infty \)
Useful to solve the firms’ problem in 2 steps:

\[\pi(\varphi, f) \equiv \max_{\Sigma, y, l, k} \left\{ py - \Gamma(\Sigma, y, \varphi, k, l) - wl - rk - w \left(\int_{c \in \Sigma} f_c dc + f_l I(\Sigma) \right) \right\} \] (1)

\[\Gamma(\Sigma, y, \varphi, k, l) \equiv \min_{z} \left\{ \int_{c \in \Sigma} p_c z_c dc \text{ s.t. } \varphi k^{\alpha} l^{1-\alpha} x^\gamma \geq y \right\} \] (2)

where

- (2) → intensive margin
- (1) → extensive margin

Note:

- (1) is hard and requires strong assumptions
- (2) can be characterized without additional assumptions

Key: (2) is all we need to measure effect of trade on unit cost
Given Σ, solve for optimal import demand

1. Letting m be import spending:

$$\frac{x_I}{m} = A(\Sigma, \varphi) = \left(\int_{c \in \Sigma} \left(\frac{\eta(q_c, \varphi)}{p_c} \right)^{\rho-1} dc \right)^{\frac{1}{\rho-1}}$$

2. Letting X be total intermediary spending:

$$x = \left(\left(\frac{\eta(q^D, \varphi)}{p_D} \right)^{\varepsilon-1} + A(\Sigma, \varphi)^{\varepsilon-1} \right)^{\frac{1}{\varepsilon-1}} X$$

$$\equiv Q(\Sigma, \varphi) X$$

Note:

- Σ affects A and Q
- φ only matters through $\eta(., \varphi)$
Intensive Margin (ctd)

We showed:

\[x = A(\Sigma, \varphi) m \]

Domestic vs foreign trade-off:

\[s_D = \frac{p_D z_D}{X} = \frac{(\eta (q_D, \varphi) / p_D)^{\varepsilon - 1}}{(\eta (q_D, \varphi) / p_D)^{\varepsilon - 1} + A(\Sigma, \varphi)^{\varepsilon - 1}} \]

And:

\[x = \left(x_D^{\varepsilon - 1} + x_I^{\varepsilon - 1} \right)^{\varepsilon \over \varepsilon - 1} = Q(\Sigma, \varphi) X \]

where

\[Q(\Sigma, \varphi) \equiv \left((\eta (q_D, \varphi) / p_D)^{\varepsilon - 1} + A(\Sigma, \varphi)^{\varepsilon - 1} \right)^{1 \over \varepsilon - 1} X \]

Hence:

\[Q(\Sigma, \varphi) = \frac{\eta (q^D, \varphi)}{p_D} s_D^{\varepsilon - 1 \over \varepsilon - 1} \]
IMPORT QUALITY FUNCTION

PROPOSITION

Let n the mass of varieties imported. Then, import price index is given by

$$A(n, \varphi)^{-1} = A(n)^{-1} = zn^\eta$$

where

$$z = \left[E[q] \left(\frac{\theta - 1}{\theta} \right) \left(\frac{\theta}{\theta - (1 - \nu)(\rho - 1)} \right)^{\frac{1}{(1 - \nu)(\rho - 1)}} \right]^{1 - \nu}$$

$$\eta = \frac{1}{\rho - 1} - \frac{1 - \nu}{\theta}$$
Import Quality Function

Proposition

Let \(n \) be the mass of varieties imported. Then, import price index is given by

\[
A(n, \varphi)^{-1} = A(n)^{-1} = zn^\eta
\]

where

\[
\begin{align*}
 z &= \left[E[q] \left(\frac{\theta - 1}{\theta} \right) \left(\frac{\theta}{\theta - (1 - \nu)(\rho - 1)} \right)^\frac{1}{(1 - \nu)(\rho - 1)} \right]^{1 - \nu} \\
 \eta &= \frac{1}{\rho - 1} - \frac{1 - \nu}{\theta}
\end{align*}
\]

- Production function for import quality
 - “TFP” \(z \) depends on diversity \((\theta)\), mean quality \((E[q])\), complementarity \((\rho)\)
 - “returns to scale” \(\eta \) depends on diversity \((\theta)\), complementarity \((\rho)\)
Import Quality Function

Proposition

Let n the mass of varieties imported. Then, import price index is given by

$$A(n, \varphi)^{-1} = A(n)^{-1} = zn^\eta$$

where

$$z = \left[E[q] \left(\frac{\theta - 1}{\theta} \right) \left(\frac{\theta}{\theta - (1 - \nu)(\rho - 1)} \right)^{\frac{1}{(1 - \nu)(\rho - 1)}} \right]^{1 - \nu}$$

$$\eta = \frac{1}{\rho - 1} - \frac{1 - \nu}{\theta}$$

- Production function for import quality
 - “TFP” z depends on diversity (θ), mean quality ($E[q]$), complementarity (ρ)
 - “returns to scale” η depends on diversity (θ), complementarity (ρ)
- Only need (z, η) for firms’ problem and hence the macro-exercise
THE GAINS FROM DIVERSITY

RESULT

Consider import quality \(A(n) = zn^\eta \).

1. Diversity increases import productivity \(z \), as

 \[
 z(E[q], \theta, \rho) > E[q]^{1-\nu} = \lim_{\theta \to \infty} z(E[q], \theta, \rho)
 \]

 \[
 \frac{\partial z(E[q], \theta, \rho)}{\partial \theta} < 0
 \]

2. Substitutability increases import productivity \(z \), as \(\frac{\partial z(E[q], \theta, \rho)}{\partial \rho} > 0 \)

3. Diversity and substitutability are complements, as \(\frac{\partial^2 z(E[q], \theta, \rho)}{\partial \theta \partial \rho} < 0 \)

 ▶ Intuition: import productivity \(A \) satisfies

 \[
 A^{\rho-1} = \int_{-q}^{\infty} q^{(1-\nu)(\rho-1)} dG(q).
 \]

 As \((\rho - 1)(1 - \nu) > 1 \), firms are risk loving and value diversity

 ▶ If \(\rho \) is high, firms can leverage quality differences

 ▶ Similar to input-output linkages in Jones (2011)
PRICES AND MARGINAL COSTS

- Competitive domestic input & final good sectors:

\[p_D = \tilde{\phi} \frac{1}{M} w^\phi P^{1-\phi} \]

\[P = \left(\int p_i^{1-\sigma} di \right)^{\frac{1}{1-\sigma}} \]

- Monopolistic competition between producer and FG firm:

\[p_i = \frac{\sigma}{\sigma - 1} MC_i \]

where

\[MC_i = \frac{1}{\phi_i} s_D(\Sigma, \varphi) \frac{\gamma}{\varepsilon - 1} \left(\frac{p_D}{\eta_D} \right)^\gamma w^{1-\gamma} h \]
An equilibrium is a set of prices \((w, [p(i)]_i, p_D)\), labor allocations \(([l(i)]_i, [l_F(i)]_i, l_D)\), differentiated product supplies \(([y(i)]_i)\), input demands \(([z_D(i)]_i, [z_c(i)]_{ci})\), quantities of the final good \((Y_C, Y_X, Y_{ROW})\), supply of domestic intermediates \(X_D\) and sourcing strategies \(([\Sigma(i)]_i)\) such that

- Variety producers maximize profits
- Final good producers maximize profits
- Domestic input producers maximize profits
- Trade is balanced
- Markets clear
Estimating the “trade elasticity” ε (CTD)

Step 1. Estimate production function in each two-digit industry following DeLoecker and Warzynski (2012)

Obtain industry-specific $\hat{\gamma}$ and $\ln(\hat{\vartheta})$ for every firm.

Step 2. Estimate:

$$\Delta \ln(\vartheta_{it}) = \beta_0 + \beta_1 \Delta \gamma_s \ln(s_{D, it}) + u_{it}$$

Instrumenting $\Delta s_{D, it}$ with:

$$z_{it} = \sum_{ck} \Delta WES_{ckt} \times s_{cki}^{pre}$$

where ΔWES_{ckt} is the change in total exports for product k of country c at year t to the world (excl. France) and s_{cki}^{pre} are firm i's import share on (k,c) prior to our sample.
PF Estimation: Equation

- Observe revenue, not physical output

- Hence estimate:

\[
ln(S) = \delta + \tilde{\alpha}ln(k) + \tilde{\beta}ln(l) + \tilde{\gamma}ln(x) + ln(\omega)
\]

where \(\tilde{\gamma} = \frac{\sigma - 1}{\sigma} \gamma, \tilde{\alpha} = \frac{\sigma - 1}{\sigma} \alpha \) and \(\tilde{\beta} = \frac{\sigma - 1}{\sigma} (1 - \alpha - \gamma) \)

- And:

\[
l(\omega) = \frac{\sigma - 1}{\sigma} ln(\vartheta) = \frac{1}{1 - \varepsilon} \tilde{\gamma}ln(s_D) + \frac{\sigma - 1}{\sigma} ln(\varphi)
\]
First Stage in Estimation of ε

<table>
<thead>
<tr>
<th></th>
<th>Levels $\gamma_s \times \ln(s_D)$</th>
<th>Differences $\gamma_s \times \Delta \ln(s_D)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>WES</td>
<td>-0.014*** (0.000)</td>
<td></td>
</tr>
<tr>
<td>ΔWES</td>
<td></td>
<td>-0.010*** (0.003)</td>
</tr>
<tr>
<td>N</td>
<td>103,333</td>
<td>67,696</td>
</tr>
<tr>
<td>R^2</td>
<td>0.11</td>
<td>0.00</td>
</tr>
</tbody>
</table>
DISTRIBUTION OF PRODUCTIVITY GAINS IN FRANCE

Figure: The distribution of productivity gains \((s_{D,i})^{\frac{\gamma}{1-\epsilon}}\)

- Average gains: 12%, Median gains 5%
Distributions of Gains: Moments

<table>
<thead>
<tr>
<th>Mean</th>
<th>Median</th>
<th>p25</th>
<th>p75</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1201</td>
<td>1.0517</td>
<td>1.0137</td>
<td>1.1391</td>
<td>114,723</td>
</tr>
</tbody>
</table>

Notes: The Table reports moments of the empirical distribution of $s_{\gamma}^{\epsilon, -1}_{D,i}$.
Correlates of the Gains

<table>
<thead>
<tr>
<th></th>
<th>Dep. Variable: Gains from Importing (\frac{\gamma}{1-\varepsilon} \ln(s_D))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\ln(va))</td>
<td>0.005*** -0.003*** -0.017***</td>
</tr>
<tr>
<td></td>
<td>(0.000) (0.000) (0.000)</td>
</tr>
<tr>
<td>(\ln(l))</td>
<td>0.002*** 0.023*** 0.013***</td>
</tr>
<tr>
<td></td>
<td>(0.000) (0.001) (0.001)</td>
</tr>
<tr>
<td>Exporter</td>
<td>0.023*** 0.013***</td>
</tr>
<tr>
<td></td>
<td>(0.001) (0.001)</td>
</tr>
<tr>
<td>Foreign Group</td>
<td>0.079*** 0.063***</td>
</tr>
<tr>
<td></td>
<td>(0.002) (0.002)</td>
</tr>
<tr>
<td>Num of varieties</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.083*** 0.092***</td>
</tr>
<tr>
<td></td>
<td>(0.001) (0.001)</td>
</tr>
</tbody>
</table>

Table: Variation in the gains from trade
Estimating the “Returns to Variety” η

- Theory implies that

$$s_D = \frac{(q_D/p_D)^{\varepsilon - 1}}{(q_D/p_D)^{\varepsilon - 1} + (zn\eta)^{\varepsilon - 1}}$$

- Estimate η from

$$\frac{1}{\varepsilon - 1} \ln \left(\frac{1 - s_D}{s_D} \right) = \text{const} + \eta \ln(n)$$
THE $\ln(s_D) - \ln(n)$ SCHEDULE

Figure: $\log\left(\frac{1-s_D}{s_D}\right) = m(\ln(n))$ in the data
Estimating Returns to Variety \(\eta (ctd) \)

\[
\frac{1}{\epsilon - 1} \ln \left(\frac{1 - s_{D,ist}}{s_{D,ist}} \right) = \delta_s + \delta_t + \delta_{nk} + \eta \ln(n_{ist}) + u_{ist}
\]

<table>
<thead>
<tr>
<th></th>
<th>Mutiple Varieties</th>
<th>Full Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Num of varieties</td>
<td>0.253***</td>
<td>0.389***</td>
</tr>
<tr>
<td></td>
<td>(0.011)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>Exporter</td>
<td>-0.111***</td>
<td>-0.205***</td>
</tr>
<tr>
<td></td>
<td>(0.016)</td>
<td>(0.008)</td>
</tr>
<tr>
<td>Foreign Group</td>
<td>0.126***</td>
<td>0.097***</td>
</tr>
<tr>
<td></td>
<td>(0.011)</td>
<td>(0.009)</td>
</tr>
<tr>
<td>(\ln(k/l))</td>
<td></td>
<td>-0.040***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.003)</td>
</tr>
<tr>
<td>(N)</td>
<td>34,621</td>
<td>114,723</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.23</td>
<td>0.36</td>
</tr>
</tbody>
</table>
Extensive Margin and η

- Extensive margin

\[n^*(\varphi, f) = \max_n \left\{ D \left(\frac{1}{MC(n)} \right)^{\sigma^{-1}} - nfw - \mathbb{I}(n > 0) f^I w \right\} \]

where

\[MC \propto \frac{1}{\varphi} \left(\left(\frac{q_D}{p_D} \right)^{\varepsilon^{-1}} + (zn\eta)^{\varepsilon^{-1}} \right)^{-\gamma / \varepsilon^{-1}} \]

- Then

\[n^*(\varphi, f) \longleftrightarrow s_D(\varphi, f) \]

- Important parameter: η
Calibration: Parameters

<table>
<thead>
<tr>
<th>Set Exogenously</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demand Elasticity</td>
<td>(\sigma)</td>
<td>3</td>
</tr>
<tr>
<td>Strength of Linkages</td>
<td>(\phi)</td>
<td>((0, 1))</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Estimated</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elasticity of Substitution</td>
<td>(\varepsilon)</td>
<td>2.83</td>
</tr>
<tr>
<td>Returns to Scale of Importing</td>
<td>(\eta)</td>
<td>0.3</td>
</tr>
<tr>
<td>Material Share</td>
<td>(\gamma)</td>
<td>0.63</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calibrated</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dispersion in Productivity</td>
<td>(\sigma^2_\phi)</td>
</tr>
<tr>
<td>Average Fixed Cost</td>
<td>(\mu_f)</td>
</tr>
<tr>
<td>Dispersion in Fixed Costs</td>
<td>(\sigma^2_f)</td>
</tr>
<tr>
<td>Correlation Fixed Costs - Productivity</td>
<td>(\rho)</td>
</tr>
<tr>
<td>Fixed Cost of Being Importer</td>
<td>(f^I)</td>
</tr>
</tbody>
</table>
Calibration: Gains from Trade

<table>
<thead>
<tr>
<th></th>
<th>(\phi = 0)</th>
<th>(\phi = 0.25)</th>
<th>(\phi = 0.5)</th>
<th>(\phi = 0.75)</th>
<th>(\phi = 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real Wage Gains (in %)</td>
<td>47.48</td>
<td>31.32</td>
<td>23.35</td>
<td>18.60</td>
<td>15.56</td>
</tr>
<tr>
<td>Welfare Gains (in %)</td>
<td>47.23</td>
<td>36.16</td>
<td>28.21</td>
<td>21.75</td>
<td>16.65</td>
</tr>
<tr>
<td>% of Labor in Fixed Cost Production</td>
<td>0.17</td>
<td>0.91</td>
<td>2.43</td>
<td>4.31</td>
<td>6.10</td>
</tr>
<tr>
<td>VA-weighted Avg Gains (in %)</td>
<td>25.01</td>
<td>25.01</td>
<td>25.01</td>
<td>25.01</td>
<td>25.01</td>
</tr>
</tbody>
</table>
Calibration: Non-Targeted Moments

<table>
<thead>
<tr>
<th>Non-Targeted Moments</th>
<th>French Data</th>
<th>Baseline</th>
<th>No Micro Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agg Domestic Share (Importers)</td>
<td>0.62</td>
<td>0.63</td>
<td>0.68</td>
</tr>
<tr>
<td>Avg Domestic Share (Importers)</td>
<td>0.70</td>
<td>0.78</td>
<td>0.95</td>
</tr>
<tr>
<td>Dispersion log Sales (Population)</td>
<td>1.59</td>
<td>2.08</td>
<td>3.46</td>
</tr>
<tr>
<td>Share of Sales by Importers</td>
<td>0.79</td>
<td>0.79</td>
<td>0.99</td>
</tr>
</tbody>
</table>
Variance of Sales

In terms of obversables:

\[
\text{cov}(\ln(Sales), \ln(s_D)) = (\sigma - 1) \text{cov}(\ln(\phi), \ln(s_D)) - \frac{\gamma (\sigma - 1)}{\varepsilon - 1} \sigma_{s_D}^2
\]

So that

\[
\sigma^2_\phi = \text{var}(\ln(Sales)) + \left(\frac{\gamma}{\varepsilon - 1} \right)^2 \sigma_{s_D}^2
\]

\[
+ \frac{2\gamma}{\varepsilon - 1} \frac{1}{\sigma - 1} \text{corr}(\ln(Sales), \ln(s_D)) \sigma_{Sales} \sigma_{s_D}
\]
Marginal Distributions: Zoom In

- French data
- Baseline
- No domestic share data

Note: the distributions of ln(sales) have been normalized to have a mean of 1.
Correlation Structure